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1. Introduction

String theory at low energy describes Einstein gravity coupled to certain matter fields,

together with infinite number of higher derivative corrections. Thus study of black holes

in string theory involves study of black holes in higher derivative theories of gravity. While

this is a complicated problem for general black holes, there are various techniques available

for studying higher derivative corrections to the entropy of extremal black holes with or

without supersymmetry. Nevertheless most of the analysis so far has been done by taking

into account only a subset of these corrections, e.g. by including only the terms in the

action proportional to Gauss-Bonnet term [1], or by including the set of all terms which

are related to the curvature squared terms by supersymmetry transformation [2 – 9].1 Even

at the string tree level there are other four derivative terms in the action which are a priori

equally important, and hence there is no justification for not including these terms in the

analysis. Later refs. [11, 12] proved certain non-renormalization theorems establishing that

for a certain class of supersymmetric black holes the results of [1, 3 – 9] are in fact exact.

The underlying assumption behind this proof is the existence of an AdS3 component of the

near horizon geometry of the black hole solution when embedded in the full ten dimensional

space-time, and supersymmetry of the resulting two dimensional theory that lives on the

boundary of this AdS3.

Notwithstanding these non-renormalization theorems, it is important to verify the

result by a direct calculation that takes into account all the higher derivative corrections

in a given order. An attempt in this direction was made in [13] where the author tried

to include all the tree level four derivative corrections to the action of heterotic string

theory compactified on a six dimensional torus T 6, and used this to compute correction

to the entropy of an extremal dyonic black hole [14]. The apparent conclusion of this

paper was that the entropy computed this way disagrees with the earlier results based

on the calculations of [1 – 9]. If this is correct then this would also contradict the non-

renormalization theorems of [11, 12]. A closer look however reveals that the analysis of [13]

1See [10] for some discussion on the relation between these two approaches.
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left out one important term, — the coupling of the gravitational Chern-Simons term to

the 3-form field strength.

The purpose of this paper is to recalculate the entropy of a dyonic black hole in tree

level heterotic string theory by including the complete set of tree level four derivative terms

in the heterotic string effective action. We find that after the effect of gravitational Chern-

Simons term is included, the resulting entropy agrees perfectly with the results of earlier

analysis, in accordance with the non-renormalization theorems of [11, 12].

In carrying out our analysis we use the entropy function formalism [15] which is well

suited for studying higher derivative corrections [16 – 19] to the entropy of extremal black

holes. In the specific context of heterotic string theory in four dimensions, this formalism

has been used to calculate the extremal black hole entropy in the presence of Gauss-Bonnet

term [20], as well as in the presence of all terms related to the curvature squared terms via

space-time supersymmetry transformaion [21]. It was also used in the analysis of [13] for

computing the effect of all the four derivative terms at tree level heterotic string theory

except the gravitational Chern-Simons term. In general the computation of the entropy

function involves expressing the four dimensional Lagrangian density in a fully gauge and

general covariant form involving only the gauge field strengths, metric, Riemann tensor,

scalar fields and their covariant derivatives, and then evaluating it in a generic SO(2, 1) ×
SO(3) invariant background reflecting the isometry of the AdS2×S2 near horizon geometry

of an extremal black hole. For part of the four dimensional lagrangian density which comes

from the dimensional reduction of a manifestly covariant six dimensional lagrangian density,

the contribution to the entropy function can be related to the value of the six dimensional

Lagrangian density evaluated in the corresponding six dimensional background [13]. This

avoids the necessity of first dimensionally reducing the six dimensional lagrangian density

to four dimensions and then evaluating its value. However this procedure fails for a part of

the six dimensional lagrangian density that involves the gravitational Chern-Simons term

coupled to the 3-form field strength, since this term cannot be written in a manifestly

covariant form. Thus we need to first dimensionally reduce this term to four dimensions,

express it in a manifestly covariant form after throwing away total derivative terms and

then evaluate its value in a specific background geometry. A general procedure for dealing

with dimensionally reduced Chern-Simons terms in the entropy function formalism was

developed in [22]. Thus the entropy function formalism is well-suited for studying the

problem at hand.

In section 2 we discuss the general strategy for dealing with the dimensional reduction

of a six dimensional action that contains a gravitational Chern-Simons term in the definition

of the 3-form field strength. We also discuss the strategy for computing the entropy function

in such a theory. In section 3 we consider the specific example of tree level heterotic string

theory compactified on T 6 or K3×T 2, analyze the complete low energy effective action up

to 4-derivative terms and evaluate its contribution to the entropy function. The extremal

black hole entropy, given by the value of the entropy function at its extremum, is then

shown to match the results of the earlier computation of [1 – 9, 15, 20, 21] based on only a

subset of the 4-derivative corrections to the Lagrangian density.
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2. Strategy for dealing with Chern-Simons terms

We begin with the low energy effective field theory of ten dimensional heterotic string theory

compactified on T 4 or K3. At tree level there is a consistent truncation of this theory in

which we ignore all the ten dimensional gauge fields and the massless fields associated with

the components of the metric and the anti-symmetric tensor fields along the compact space

T 4 or K3. In this case the remaining massless fields consist of the string metric G
(6)
MN, the

anti-symmetric tensor field B
(6)
MN and the dilaton field Φ(6) with 0 ≤ M,N ≤ 5. The gauge

invariant field strength associated with the anti-symmetric tensor field is given by:

H
(6)
MNP = ∂MB

(6)
NP + ∂NB

(6)
PM + ∂P B

(6)
MN + λΩ

(6)
MNP , (2.1)

where λ is a coefficient to be specified later and Ω
(6)
MNP denotes the gravitational Chern-

Simons 3-form constructed out of the six dimensional spin connections, normalized such

that

∂QΩ
(6)
MNP + anti-symmetrization in P,Q,M,N

= −1

8
R

(6)K
SMN R

(6)S
KPQ + anti-symmetrization in P,Q,M,N . (2.2)

R
(6)
MNPQ denotes the Riemann tensor associated with the metric G

(6)
MN. We shall denote the

action of this theory as

S =

∫
d6x

√
− detG(6) L(6) (2.3)

where the Lagrangian density L(6) is a function of G
(6)
MN, the Riemann tensor R

(6)
MNPQ,

H
(6)
MNP, Φ(6) and covariant derivatives of these fields.

We shall study compactification of this theory on a two dimensional torus T 2 and study

the entropy of extremal black holes in this theory. This will give rise to four abelian gauge

fields from the components of the metric and the antisymmetric tensor fields along the T 2

directions. The resulting lagrangian density, besides depending on the covariant objects

like the metric, Riemann tensor, gauge field strengths and their covariant derivatives, will

also depend explicitly on the spin connection and the gauge fields due to the presence of the

gravitational Chern-Simons term inside HMNP as in (2.1) and similar gauge Chern-Simons

terms which are induced during compactification [23]. Our goal is to express the effective

Lagrangian density in a manifestly covariant form without involving any Chern-Simons

terms so that we can apply the entropy function formalism. This will be done in two steps:

1. First at the level of the six dimensional description itself we shall introduce a new

field C
(6)
MN and its field strength

K(6)
MNP = ∂MC

(6)
NP + ∂NC

(6)
PM + ∂P C

(6)
MN , (2.4)

and consider a new Lagrangian density
√

− det G(6) L̃(6) ≡
√

− detG(6) L(6) +
1

16π2

1

(3!)2
εMNPQRSK(6)

MNPH
(6)
QRS

− 1

16π2

1

(3!)2
λ εMNPQRSK(6)

MNPΩ
(6)
QRS (2.5)
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where we treat H
(6)
MNP and C

(6)
MN as independent variables. The normalization factor

of 1
16π2

1
(3!)2 has been introduced for later convenience. Then we can first solve the

C
(6)
MN equations of motion to get the result

d(H(6) − λΩ(6)) = 0 , (2.6)

which can then be solved to get (2.1). Substituting this into (2.5) we recover the

original action (2.3). On the other hand if we first eliminate H
(6)
MNP by using its

equation of motion, we get

√
− detG(6) L̃(6) =

√
− detG(6) L̃(6)′ − 1

16π2

1

(3!)2
λ εMNPQRSK(6)

MNPΩ
(6)
QRS (2.7)

where L̃(6)′ is the sum of the first two terms on the right hand side of (2.5) after

elimination of H
(6)
MNP. This is now to be regarded as a function of the ‘dual field’ C

(6)
MN.

L̃(6)′ depends on C
(6)
MN solely through its field strength K(6) ∝ dC(6) and hence has

a manifestly covariant form without any Chern-Simons terms. The full Lagrangian

density is still not manifestly covariant due to the presence of the Chern-Simons

3-form in the last term of (2.7).

2. We now dimensionally reduce this theory to four dimensions by introducing the fields

Gµν , Cµν , Φ, Ĝmn, Ĉmn and A(i)
µ (0 ≤ µ ≤ 3, 4 ≤ m,n ≤ 5, 1 ≤ i ≤ 4) via the

relations

Ĝmn = G(6)
mn, Ĉmn = C(6)

mn ,

Ĝmn = (Ĝ−1)mn ,

A(m−3)
µ =

1

2
ĜmnG(6)

mµ, A(m−1)
µ =

1

2
C(6)

mµ − ĈmnA(n−3)
µ ,

Gµν = G(6)
µν − ĜmnG(6)

mµG(6)
nν ,

Cµν = C(6)
µν − 4ĈmnA(m−3)

µ A(n−3)
ν − 2(A(m−3)

µ A(m−1)
ν −A(m−3)

ν A(m−1)
µ ) ,

Φ = Φ(6) − 1

2
ln VM , (2.8)

where x4 and x5 are the coordinates labelling the torus and VM is the volume of

T 2 measured in the string metric. We shall normalize x4 and x5 so that they have

coordinate radius 1. Then

VM = 4π2
√

det Ĝ . (2.9)

The gauge invariant field strengths associated with A(i)
µ and Cµν are

F (i)
µν = ∂µA(i)

ν − ∂νA(i)
µ , 1 ≤ i, j ≤ 4 , (2.10)

Kµνρ = (∂µCνρ + 2A(i)
µ LijF (j)

νρ ) + cyclic permutations of µ, ν, ρ , (2.11)

where

L =

(
0 I2

I2 0

)
, (2.12)

– 4 –



J
H
E
P
0
1
(
2
0
0
7
)
0
1
0

I2 being 2 × 2 identity matrix. In this case the Lagrangian density, obtained by

dimensional reduction of the right hand side of (2.7) has the form

√
− detG L̃ =

√
− detG L̃′ +

√
− det G L̃′′ , (2.13)

where √
− detG L̃′ =

∫
dx4dx5

√
− detG(6) L̃(6)′ , (2.14)

√
− det G L̃′′=− 1

16π2

1

(3!)2
λ

∫
dx4dx5εMNPQRSK(6)

MNPΩ
(6)
QRS + total derivative terms.

(2.15)

L̃′ is a function of the field strength Kµνρ and other covariant objects. We shall

explicitly demonstrate that L̃′′ is also a function of the field strengths and other

covariant objects after we remove certain total derivative terms. However due to the

presence of explicit gauge fields in the expression for Kµνρ this form of the Lagrangian

density is not suitable for applying the entropy function method. For this we dualize

this action further by replacing the Lagrangian density
√
− det G L̃ by

√
− detG L̃ + εµνρσ Kµνρ ∂σ b + 3 b εµνρσ F (i)

σµLijF (j)
νρ , (2.16)

and treating Kµνρ and the new scalar field b as independent variables. If we choose

to first use the equation of motion of the b field then we get

εµνρσ∂σ

(
Kµνρ − 6A(i)

µ LijF (j)
νρ

)
= 0 , (2.17)

which has as its solution the form (2.11) for some Cµν . Substituting this into (2.16)

we recover the original action (2.13) up to total derivative terms. On the other

hand if we first eliminate Kµνρ from (2.16) by its equation of motion we shall get a

Lagrangian density of the form:

√
− detG L̂ =

√
− det G L̂′ + 3 b εµνρσ F (i)

σµLijF (j)
νρ , (2.18)

where L̂′, obtained by substituting the solution for Kµνρ in the first two terms

in (2.16), has a manifestly covariant expression in terms of ∂σb and other covari-

ant objects. This way we arrive at a manifestly covariant form of the Lagrangian

density for which we can apply the entropy function formalism.

Let us now say a few words about the evaluation of the entropy function E . For this

we need to consider a general AdS2 ×S2 near horizon geometry with all other background

field configurations consistent with the symmetries of AdS2 × S2 and define

E = 2π

(
4∑

i=1

q̃i ẽi −
∫

dθ dφ
√
− detG L̂

)
, (2.19)

evaluated in this background. Here q̃i denotes the electric charge associated with the gauge

field A(i)
µ and ẽi denotes the value of the radial electric field F (i)

rt . Since (2.18) is obtained

from (2.16) after elimination of the variables Kµνρ, and since the right hand side of (2.16)

– 5 –
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is manifestly covariant when Kµνρ is interpreted as an auxiliary field, we can replace the√
− det G L̂ on the right hand side of (2.19) by the right hand side of (2.16). Since both

∂σb and Kµνρ vanish in an AdS2 × S2 geometry due to the absence of SO(2, 1) × SO(3)

invariant 1- and 3-forms, we can set them to zero in (2.16) during the computation of the

entropy function. Thus we have

E = 2π

(
4∑

i=1

q̃i ẽi −
∫

dθ dφ
√
− detG L̃ − 3

∫
dθdφ b εµνρσ F (i)

σµLijF (j)
νρ

)
. (2.20)

Using eqs. (2.13), (2.14) we can express this as

E = 2π

( 4∑

i=1

q̃i ẽi −
∫

dθ dφ dx4 dx5
√

− det G(6) L̃(6)′ −
∫

dθ dφ
√
− detG L̃′′

−3

∫
dθ dφ b εµνρσ F (i)

σµ Lij F (j)
νρ

)
. (2.21)

Finally, using (2.5), (2.7) we can express this as

E = 2π

[
4∑

i=1

q̃iẽi−
∫

dθdφdx4dx5

(√
− detG(6)L(6)+

1

16π2

1

(3!)2
εMNPQRSK(6)

MNPH
(6)
QRS

)

−
∫

dθ dφ
√
− detG L̃′′ − 3

∫
dθ dφ b εµνρσ F (i)

σµLijF (j)
νρ

]
, (2.22)

where H
(6)
MNP needs to be interpreted as an elementary auxiliary field which has to be

eliminated by its equation of motion. The terms in the first line of (2.22) can be evaluated

by regarding the background as a six dimensional configuration. Thus we do not need

to explicitly find the dimensional reduction of this term. For the contribution from the

L̃′′ term however we cannot directly evaluate the six dimensional form proportional to∫
dx4dx5 εMNPQRSK(6)

MNPΩ
(6)
QRS due to the presence of the total derivative terms in (2.15).

We need to first find its dimensional reduction to four dimensions and then use this to

calculate the entropy function.

So far we have not made any approximation. What we are interested in however is

an approximation scheme where we take into account higher derivative corrections to the

effective action in a power series expansion. In particular we shall be interested in the

correction due to the four derivative terms in the action. For this let us split the original

Lagrangian density L(6) as

L(6) = L(6)
0 + L(6)

1 , (2.23)

where L(6)
0 denotes the supergravity Lagrangian density and L(6)

1 denotes four derivative

corrections. The entropy function obtained from this Lagrangian density has the form:

E = E0 + E1 , (2.24)

– 6 –
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with E0 and E1 reflecting the contribution from the two and four derivative terms respec-

tively:

E0 = 2π

( 4∑

i=1

q̃iẽi−
∫

dθdφdx4dx5

(√
−detG(6)L(6)

0 +
1

16π2

1

(3!)2
εMNPQRSK(6)

MNPH
(6)
QRS

)

−3

∫
dθdφ b εµνρσF (i)

σµLijF (j)
νρ

)
, (2.25)

E1 = 2π

(
−

∫
dθdφdx4dx5

√
− detG(6) L(6)

1 −
∫

dθ dφ
√
− det G L̃′′

)
. (2.26)

Since the entropy is given by the value of E at its extremum, a first order error in the

determination of the near horizon background will give a second order error in the value of

the entropy. Thus we can find the near horizon background, including the auxiliary field

H
(6)
MNP, by extremizing E0 and then evaluate E0 + E1 in this background. This gives the

value of the entropy correctly up to first order.

3. Computation of the entropy

We shall now compute the entropy function for heterotic string theory compactified on T 6

or K3×T 2 following the strategy outlined in the previous section. We begin with the com-

putation of E0. In the α′ = 16 unit that we shall be using in order to facilitate comparison

with previous results (e.g that of [20]), the relevant bosonic part of the Lagrangian density

L(6)
0 , describing heterotic string theory compactified on T 4 or K3, can be expressed as

L(6)
0 =

1

32π
e−2Φ(6)

[
R(6) + 4∂MΦ(6)∂MΦ(6) − 1

12
H

(6)
MNPH(6)MNP

]
, (3.1)

where all the indices are raised and lowered by the six dimensional string metric G
(6)
MN. In

writing down this expression we have set to zero all the ten dimensional gauge fields as

well as the gauge and moduli fields associated with the compact space T 4 or K3. This is

a consistent truncation of the theory. Thus at this order H
(6)
MNP, obtained by extremizing

E0 given in (2.25), is given by

H(6)MNP = − 1

3!

2

π

(√
− detG(6)

)−1
e2Φ(6)

εMNPQRSK(6)
QRS . (3.2)

As discussed after eq. (2.26), we can continue to use this result even at next order if we

want to calculate the correction to the black hole entropy up to four derivative terms.

After dimensional reduction given in (2.8) we get a four dimensional theory. We

consider an extremal black hole solution in this theory with near horizon configuration:

ds2 ≡ Gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ2 + sin2 θdφ2) ,

Ĝ =

(
u2

1 0

0 u2
2

)
, Ĉ = 0, e−2Φ = uS , b = 0 ,

F (1)
rt = ẽ1, F (3)

rt = ẽ3, F (2)
θφ =

p̃2

4π
sin θ , F (4)

θφ =
p̃4

4π
sin θ . (3.3)

– 7 –
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We have set the off-diagonal components of Ĝ, Ĉ, the scalar field b and some components of

the eletromagnetic field strengths to zero by requiring the field configuration to be invariant

under x5 → −x5, xi → −xi for 1 ≤ i ≤ 3. Using (2.8) we see that this corresponds to the

following six dimensional field configuration:

ds2
6 ≡ G

(6)
MNdxMdxN = ds2 + u2

1(dx4 + 2ẽ1rdt)2 + u2
2

(
dx5 − p̃2

2π
cos θdφ

)2

,

C
(6)
4t = 2ẽ3r , C

(6)
5φ = − p̃4

2π
cos θ ,

e−2Φ(6)
=

uS

4π2 u1u2
, (3.4)

which gives

K(6)
rt4 = −2ẽ3 , K(6)

θφ5 = − p̃4

2π
sin θ . (3.5)

We shall use the convention

εtrθφ45 = 1 . (3.6)

Eq. (3.2) then gives

H(6)rt4 =
2

π
(
√

− detG(6))−1 e2Φ(6) K(6)
θφ5 = − 4

v1v2uS
p̃4,

H(6)θφ5 = − 2

π
(
√

− detG(6))−1 e2Φ(6) K(6)
rt4 =

16π

v1v2uS sin θ
ẽ3 . (3.7)

For this specific configuration (2.25) gives the leading order entropy function to be

E0 = 2π

[
ẽ1q̃1 + ẽ3q̃3 −

1

8
v1v2uS

(
− 2

v1
+

2

v2
+

2u2
1ẽ

2
1

v2
1

+
128π2u2

2ẽ
2
3

v2
1u

2
S

− u2
2p̃

2
2

8π2v2
2

− 8u2
1p̃

2
4

v2
2u

2
S

)]
.

(3.8)

Extremizing this with respect to ẽ1 and ẽ3 and substituting their values back in (3.8) we

get

ẽ1 =
2v1q̃1

v2uSu2
1

, ẽ3 =
v1uS q̃3

32π2v2u
2
2

. (3.9)

and

E0 =
π

4
v1v2uS

[
2

v1
− 2

v2
+

8q̃2
1

v2
2u

2
Su2

1

+
q̃2
3

8π2v2
2u

2
2

+
u2

2p̃
2
2

8π2v2
2

+
8u2

1p̃
2
4

v2
2u

2
S

]
. (3.10)

In this form the entropy function cannot be directly compared with the earlier results

of [20], since we have defined the gauge fields A(3)
µ and A(4)

µ via dimensional reduction of

the fields C
(6)
MN whereas the gauge fields A

(3)
µ and A

(4)
µ of ref. [20] would come from the

dimensional reduction of the anti-symmetric tensor field B
(6)
MN which are dual to the fields

C
(6)
MN. We can find the relation between the charges (p̃i, q̃i) and the charges (pi, qi) of [20] by

comparing the expressions for H(6)MNP given in (3.7) with the corresponding expressions

in [20], and then using the relation between the near horizon fields and charges in both

description. This gives

q1 = q̃1, p2 = p̃2, q3 = −p̃4, p4 = −q̃3 . (3.11)

– 8 –
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(3.10) may now be rewritten as

E0 =
π

4
v1v2uS

[
2

v1
− 2

v2
+

8q2
1

v2
2u

2
Su2

1

+
p2
4

8π2v2
2u

2
2

+
u2

2p
2
2

8π2v2
2

+
8u2

1q
2
3

v2
2u

2
S

]
. (3.12)

This agrees with the entropy function computed in [20].

The relations (3.11) between the two sets of charges depend on the precise normal-

ization of the dual field K(6)
MNP and the definition of the four dimensional gauge fields in

terms of the six dimensional fields, but not on the details of the Lagrangian density L(6).

Thus (3.11) continues to hold even after inclusion of higher derivative corrections to the

action. In order to facilitate comparison with the known results we shall express all answers

in terms of the charges q1, q3, p2 and p4 from now on. Physically these charges represent

n unit of momentum and w unit of winding charge along x4 and N ′ unit of Kaluza-Klein

monopole and W ′ unit of H-monopole charge associated with the circle along x5, with [20]

q1 =
1

2
n, q3 =

1

2
w, p2 = 4πN ′, p4 = 4πW ′ . (3.13)

Extremizing (3.12) with respect to v1, v2, u1, u2 and uS and using (3.9) we get

v1 = v2 =
1

4π2
|p2p4| , uS = 8π

√∣∣∣∣
q1q3

p2p4

∣∣∣∣, u1 =

√∣∣∣∣
q1

q3

∣∣∣∣, u2 =

√∣∣∣∣
p4

p2

∣∣∣∣

ẽ1 =
1

4πq1

√
|p2p4q1q3|, ẽ3 = − 1

4πp4

√
|p2p4q1q3| . (3.14)

Substituting this back into (3.12) we get the leading order contribution to the black hole

entropy:

E0 =
√

|p2p4q1q3| = 2π
√

|nwN ′W ′| . (3.15)

We now turn to the evaluation of E1. We shall divide the contribution into two parts:

E1 = E ′
1 + E ′′

1 , (3.16)

where

E ′
1 = −2π

∫
dθdφdx4dx5

√
− detG(6) L(6)

1 (3.17)

and

E ′′
1 = −

∫
dθdφ

√
− detGL̃′′ . (3.18)

First let us compute E ′
1. For this we need the expression for the four derivative corrections

to the heterotic string effective action at the string tree level. This is given by [24, 25]

L(6)
1 =

1

16π
e−2Φ(6)

[
R

(6)
KLMNR(6)KLMN − 1

2
R

(6)
KLMNH

(6)KL
P H(6)PMN

−1

8
H

(6)MN
K H

(6)
LMNH(6)KPQH

(6)L
PQ +

1

24
H

(6)
KLMH

(6)K
PQ H

(6)LP
R H(6)RMQ

]
.

(3.19)
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Using (3.4)-(3.7) and (3.17) we get [13]

E ′
1 = −4πv1v2uS

[
1

2v2
1

+
1

2v2
2

− 3ẽ2
1u

2
1

v3
1

− 3p̃2
2u

2
2

16v3
2π

2
+

11u4
1ẽ

4
1

2v4
1

+
11p̃4

2u
4
2

512v4
2π4

− 4u2
1p̃

2
4

v1v2
2u

2
S

− 64π2u2
2ẽ

2
3

v2
1v2u2

S

+
4u4

1p̃
2
4ẽ

2
1

v2
1v

2
2u

2
S

+
4u4

2ẽ
2
3p̃

2
2

v2
1v

2
2u

2
S

−40u4
1p̃

4
4

v4
2u

4
S

− 10240π4u4
2ẽ

4
3

v4
1u

4
S

]
. (3.20)

As discussed below eq. (2.26), in computing the black hole entropy we can substitute the

solution given in (3.14), obtained by extremizing E0, into the expression for E1. This gives

the contribution to the black hole entropy from E ′
1 to be [13]

E ′
1 = 16π2

√∣∣∣∣
q1q3

p2p4

∣∣∣∣ . (3.21)

Let us now turn to the computation of E ′′
1 . This would require first dimensionally

reducing the Chern-Simons term to construct a covariant four dimensional Lagrangian

density via eq. (2.15), and then computing its contribution to the entropy function via

eq. (3.18). This analysis can be simplified by regarding the sphere labelled by θ, φ also

as a compact space and considering dimensional reduction of (2.15) all the way to two

dimensions spanned by the coordinates r and t. The resulting two dimensional Lagrangian

density has the form

√
− det G(2) L̃(2)′′ = − 1

16π2

1

(3!)2
λ

∫
dx4dx5 dθ dφ εMNPQRSK(6)

MNPΩ
(6)
QRS

+total derivative terms , (3.22)

where the total derivative terms need to be chosen such that the L(2)′′ is manifestly covari-

ant. The contribution E ′′
1 to the entropy function is then given by

E ′′
1 = −2π

√
− detG(2) L̃(2)′′ , (3.23)

evaluated in the near horizon background of the black hole.

We can carry out the dimensional reduction from six to two dimensions in two statges.

First of all we note that the six dimensional field configuration given in (3.4) has the

structure of a product of two three dimensional spaces, the first one labelled by (θ, φ, x5)

and the second one labelled by (t, r, x4). Thus we can make a consistent truncation where

we consider only those field configurations which respect this product structure. In this

case (3.22) simplifies to

√
− det G(2) L̃(2)′′ = − 1

16π2

1

(3!)2
λ

∫
dx4 dx5 dθ dφ εm̌ňp̌εα̌β̌γ̌(K(6)

m̌ňp̌Ω
(6)

α̌β̌γ̌
− Ω

(6)
m̌ňp̌K

(6)

α̌β̌γ̌
)

(3.24)

where the indices m̌, ň, p̌ run over (θ, φ, x5) and the indices α̌, β̌, γ̌ run over (t, r, x4). We

have chosen the following convention for the three dimensional ε tensors:

εtr4 = 1, εθφ5 = 1 . (3.25)
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Let us now label the components of the six dimensional metric as

G
(6)
m̌ňdxm̌dxň = G

(6)
55

(
hmndxmdxn + (dx5 + 2A(2)

m dxm)2
)

(3.26)

and

G
(6)

α̌β̌
dxα̌dxβ̌ = G

(6)
44

(
gαβdxαdxβ + (dx4 + 2A(1)

α dxα)2
)

(3.27)

where the indices m,n run over (θ, φ) and the indices α, β run over (t, r). Then it follows

from the analysis of [26, 22] that
∫

dx5 dθ dφ εm̌ňp̌Ω
(6)
m̌ňp̌ = π

∫
dθ dφ εmn

[
Rh F (2)

mn + 4hm′p′ hq′q F (2)
mm′ F (2)

p′q′ F (2)
qn

]
(3.28)

and
∫

dx4εα̌β̌γ̌Ω
(6)

α̌β̌γ̌
= π εαβ

[
RgF (1)

αβ + 4 gα′γ′

gδ′δ F (1)
αα′F (1)

γ′δ′ F
(1)
δβ

]
+ total derivative terms

(3.29)

where Rh and Rg denotes the scalar curvature associated with the metrics hmn and gαβ

respectively. Our convention for the two dimensional ε tensor is

εtr = 1, εθφ = 1 . (3.30)

Thus we get
√

− det G(2) L̃(2)′′ =

− 1

16π

1

(3!)2
λ

[
6π

(∫
dθ dφ εmn K(6)

5mn

)
εαβ

[
RgF (1)

αβ + 4 gα′γ′

gδ′δ F (1)
αα′F (1)

γ′δ′ F
(1)
δβ

]

−6π

(∫
dθ dφ εmn

[
Rh F (2)

mn + 4hm′p′ hq′q F (2)
mm′ F (2)

p′q′ F (2)
qn

])
εαβK(6)

4αβ

]
. (3.31)

Since the lagrangian density now has manifest covariance, we can apply the entropy

function formalism. This requires evaluating the right hand side of (3.31) for the six

dimensional background given in (3.4). Noting that for this configuration

hmndxmdxn = v2 u−2
2 (dθ2+sin2 θdφ2) , gαβdxαdxβ = v1 u−2

1 (−r2dt2+dr2/r2) , (3.32)

we get

√
− det G(2) L̃(2)′′ =

2λπ

3

[
p̃4

4π

(
u2

1

v1
ẽ1 − 2

u4
1

v2
1

ẽ3
1

)
+ ẽ3

(
u2

2

v2

p̃2

4π
− 2

u4
2

v2
2

(
p̃2

4π

)3
)]

. (3.33)

Evaluating this for the solution given in (3.14) we get

E ′′
1 = −2π

√
− det G(2) L̃(2)′′ =

1

6
λπ2

(
q1q3√

|p2p4q1q3|
+

√
|p2p4q1q3|
p2p4

)
(3.34)

For definiteness we shall now consider the range of values

p2 > 0, p4 > 0, q3 > 0 . (3.35)
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In this case the full black hole entropy, given by the value of the entropy function at its

extremum, becomes

E = E0 + E ′
1 + E ′′

1 =
√

|p2p4q1q3|
[
1 +

π2

p2p4

{
16 +

1

6
λ

(
1 +

q1

|q1|

)}]
. (3.36)

Let us now turn to the determination of the parameter λ. If we define

a = 8π C
(6)
45 , (3.37)

then after elimination of H
(6)
MNP using (3.2) and dimensional reduction to four dimensions,

the action contains the terms:

1

32π

∫
d4x

[
−1

2

√
− detG e2Φ Gµν∂µa∂νa +

λ

48
a εµνρσ Rc

dµν Rd
cρσ + · · ·

]
. (3.38)

a plays the role of the axion field. Comparing this with the standard action for tree level

heterotic string theory (see e.g. [21]) compactified down to four dimensions, we get

λ = 48 . (3.39)

Eq. (3.36) now gives

E =
√

|p2p4q1q3|
[
1 + 32

π2

p2p4

]
= 2π

√
|nwN ′W ′|

[
1 +

2

N ′W ′

]
for q1 > 0 ,

=
√

|p2p4q1q3|
[
1 + 16

π2

p2p4

]
= 2π

√
|nwN ′W ′|

[
1 +

1

N ′W ′

]
for q1 < 0 . (3.40)

For q1 > 0 the black hole is supersymmetric. The result for the entropy agrees with the

result obtained by 1) including only the Gauss-Bonnet term in the four dimensional effective

action [1, 20], 2) including a fully supersymmetrized version of the curvature squared

correction in the four dimensional effective action [3 – 9] and 3) the argument based on the

existence of an AdS3 component of the near horizon geometry and supersymmetry of the

associated boundary theory [11, 12]. Since the last result makes use of supersymmetry to

relate the gauge anomaly to the trace anomaly in the boundary theory, our result provides

an indirect evidence that the bosonic effective action given in (3.19) can be consistently

supersymmetrized to this order in α′.

We also see from (3.36) that

Eq1>0 − Eq1<0 = 16
√

|p2p4q1q3|
π2

p2p4
. (3.41)

This agrees with the result derived under the assumption that the subspace spanned by

the coordinates x4, t and r form a locally AdS3 space time near the horizon [11, 12, 21, 22].

Finally we note that for heterotic string theory compactified on T 6 or more general N =

4 supersymmetric string compactification, the statistical entropy of some of these black

holes can be computed exactly by representing them as a configuration of D-branes and

Kaluza-Klein monopoles in the dual type IIA string theory [27 – 33]. The approximation
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used here by restricting to tree level heterotic string theory will be a valid approximation

if the near horizon value of the string coupling constant is small. (3.14) shows that this

requires the electric charges q1, q3 to be large compared to the magnetic charges p2, p4.

Within this approximation the result for the statistical entropy is known to agree with the

black hole entropy computed using the Gauss-Bonnet term [34, 30, 31, 33]. Hence this also

agrees with the results found here by including the complete set of higher derivative terms.
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